Astropolitics and Service: what it's all about and what you can do

Prof. Debra Elmegreen
Vassar College

Alphabet Soup of Astropolitics

- American Astronomical Society (AAS)
 - Committee on Astronomy and Public Policy
- International Astronomical Union (IAU)
- National Research Council (NRC) of the National Academy of Sciences (NAS)
 - Board on Physics and Astronomy (BPA)
 - Space Studies Board (SSB)
 - Committee on Astronomy and Astrophysics
- Astronomy and Astrophysics Advisory Committee (for joint NASA, NSF, DOE projects)
- Associated Universities for Research in Astronomy (AURA)
- American Association for the Advancement of Science (AAAS)
- Plus advisory committees for NASA, NSF, Space Telescope Science Institute, etc.

Why?

- Astronomers rely on federal grants and federal telescopes to conduct research
- Scientific research comes from the government's non-defense discretionary funding
- The available funds are flat or decreasing
- Astronomy needs advocacy and we don't do enough of it to have a presence in Washington

National Academies Reports

- Decadal surveys set community priorities
 - 60 yrs' worth for astronomy, leading to Hubble Space Telescope, Gemini telescopes, ALMA, LSST, JWST...
- Committee reports to supply detailed recommendations to funding agencies
 - Optical and Infrared Optimization
 Survey

e.g., the current US OIR System suite

- For U.S. telescopes > 2m, 76% of time is private (open access for 19% 6-12m, 33% 3.5-5m, 8% 2-3m)
- Private facilities don't have all the resources they need, and are open to the idea of sharing

Large Telescopes (6-12 meters)				
Large Binocular Telescope	Mt. Graham, AZ	11.8*	0.50	0.00
(LBT)				
Keck 1	Mauna Kea, HI	10.0	1.00	0.17
Keck 2	Mauna Kea, HI	10.0	1.00	0.17
Hobby Eberly Telescope	McDonald Observatory, TX	9.2	0.89	0.00
(HET)				
South African Large	South African Astronomical	9.2	0.40	0.00
Telescope	Observatory, Sutherland, S.Africa			
Subaru	Mauna Kea, HI	8.3	0.10	0.00
Gemini N (Gillette)	Mauna Kea, HI	8.1	0.69	0.60
Gemini S	Cerro Pachon, Chile	8.1	0.59	0.60
Magellan (Baade)	Las Campanas, Chile	6.5	0.90	0.00
Magellan (Clay)	Las Campanas, Chile	6.5	0.90	0.00
MMT	Mt. Hopkins, AZ	6.5	1.00	0.00
Effective fractional number of telescopes			7.99	1.54
Medium Telescopes (3.5-5 meters	s)			
Hale Telescope	Palomar Observatory, CA	5.1	1.00	0.00
Discovery Channel Telescope	Happy Jack, AZ	4.3	1.00	0.00
SOAR	Cerro Pachon, Chile	4.2	0.70	0.30
Blanco Telescope	Cerro Tololo, Chile	4.0	0.90	0.90**

Kitt Peak, AZ

Mauna Kea, HI

Mauna Kea, HI

Kitt Peak, AZ

Apache Point, NM

Effective fractional number of telescopes

Observatory/Site

Aperture

Fraction

1.00

1.00

0.20

1.00

1.00

7.80

3.5

3.5

1.00

0.00

0.00

0.00

0.40

2.60

Open

Fraction

TABLE 3.1 Telescopes Considered by the Committee

Small Telescopes (2-3 meters) Shane Lick Obser., Mt. Hamilton, CA 3.0 1.00 0.00 IRTF Mauna Kea, HI 1.00 1.00 Harlan Smith McDonald Observatory, TX 2.7 1.00 0.00 DuPont Las Campanas, Chile 2.5 0.90 0.00 Sloan Foundation (SDSS) Apache Point, NM 2.5 1.00 0.00^{-1} Hiltner Kitt Peak, AZ 2.4 1.00 0.00 WIRO 2.2 Jelm Mtn, WY 1.00 0.00 Bok Kitt Peak, AZ 1.00 0.00 UH 88-inch Mauna Kea. HI 2.2 1.00 0.00 2.1 Otto Struve McDonald Observatory, TX 1.00 0.00 2.1 KPNO 2.1m Kitt Peak, AZ 1.00 0.00 LCOGT Haleakala, HI 2.0 0.75 0.00 LCOGT 0.75 0.00 Siding Spring, Australia Effective fractional number of telescopes 12.40 1.00

Mayall Telescope

UKIRT

CFHT

WIYN

ARC 3.5m

^{*} LBT is two coupled 8.4-meter telescopes with the equivalent area of a single 11.8-meter telescope.

^{**} This is for pre- and post-DES.

[†] Sloan is a survey instrument; all Sloan Digital Sky Survey (SDSS) I-III data are now public.

The best science often requires multiple capabilities

- Even astronomers with private access don't have all the capabilities they need
- The 9000 nights of telescope time to US astronomers generates 2000 papers from 1500 astronomers

CONCLUSION: Interest from and telescope usage by a large, diverse, and active community of high-quality researchers is correlated with high-impact scientific output.

Federal Budget

Composition of the Proposed FY 2013 Budget Total Outlays = \$3.8 trillion

outlays in billions of dollars

tates Government FY 2013.

billion.

Every dollar the federal government spends....

\$0.20 = Social Security

\$0.20 = Other Mandatory

\$0.19 = Medicare/Medicaid

\$0.17 = Defense

\$0.14 = Nondefense

\$0.04 = Research and Development

· Of that: nearly half is weapons development

Non-Defense Discretionary Spending

Projected

Center on Budget and Policy Priorities | cbpp.org

····· Average ····· Previous low

*Data available only back to 1962

Congressional Budget Office data.

Current policy, including sequestration**

**Sequestration budget cuts required under the 2011 Budget Control Act.

1962 1967 1972 1977 1982 1987 1992 1997 2002 2007 2012 2017 2022

Historical

Source: Center on Budget and Policy Priorities based on Office of Management and Budget and

Total R&D by Agency, FY 2013

budget authority in billions of dollars

Source: OMB R&D data, agency budget justifications, and other agency documents. R&D includes conduct of R&D and R&D facilities.

The federal budget cycle

Agencies are working on 3 budgets at any given time

- •FY 2012: Spending
- •FY 2013: Congress at "work"
- •FY 2014: OMB/OSTP agency guidance

President's budget request

Account	FY 2014 Actual	FY 2015 Est.	FY 2016 Request
NASA	\$17,646.5	\$18,010.2	\$18,529.1
Science Mission Directorate (SMD)	\$5,148.2	\$5,244.7	\$5,288.6
Earth Science	\$1,824.9	\$1,772.5 ¹	\$1,947.3
Planetary Science (PSD)	\$1,343.4	\$1,437.8 ¹	\$1,361.3
Astrophysics (APD)	\$678.3	\$726.81	\$709.1
Education & Public Outreach**		\$42.01	\$20.0
James Webb Space Telescope (JWST)	\$658.2	\$645.4	\$620.0
Heliophysics (HPD)	\$643.3	\$662.01	\$651.0
NSF	\$7,171.9	\$7,344.2	\$7,723.6
Research & Related Activites (R&RA)	\$5,808.9	\$5,933.6	\$6,186.3
Mathematical & Physical Sciences (MPS)	\$1,267.9	\$1,336.7	\$1,366.2
Astronomy Division (AST)	\$238.4	\$244.2	\$246.6
Geosciences (GEO)	\$1,321.3	\$1,304.4	\$1,365.4
Atmospheric & Geospace Sciences Division (AGS)	\$250.9	\$251.2	\$262.9
Major Research Equipment & Facilities Construction (MREFC)	\$200.0	\$200.8	\$200.3
Large Synoptic Survey Telescope (LSST)	\$27.5	\$79.6	\$99.7
Daniel K. Inouye Solar Telescope (DKIST)	\$36.9	\$25.1	\$20.0
Education & Human Resources (EHR)	\$846.5	\$866.0	\$962.6
DOE	\$27,281.0	\$27,402.4	\$29,923.8
Office of Science	\$5,071.0	\$5,067.7	\$5,339.8
High Energy Physics	\$797.5	\$766.0	\$788.0
Cosmic Frontier	\$99.1	\$106.8	\$119.3

millions of \$

	Account	FY 2015	FY 2016 President's Request	FY 2016 Senate Committee	FY 2016 House Floor
	NASA	\$18,010.2	\$18,529.1	\$18,289.5	\$18,529.1
	Science Mission Directorate	\$5,244.7	\$5,288.6	\$5,295.0	\$5,237.5
	Earth Science	\$1,772.5	\$1,947.3	\$1,931.6	\$1,682.9
House,	Planetary Science	\$1,437.8	\$1,361.3	\$1,321.0	\$1,557.0
•	Astrophysics	\$726.8	\$709.1	\$730.6	\$735.6
Senate	Education & Public Outreach	\$42.0	\$20.0	\$42.0	\$32.0
•	JWST	\$645.4	\$620.0	\$620.0	\$620.0
Approps	Heliophysics	\$662.0	\$651.0	\$649.8	\$642.0
Bills	NSF	\$7,344.2	\$7,723.6	\$7,343.8	\$7,394.2
DIIIS	Research & Related Activities	\$5,933.6	\$6,186.3	\$5,933.6	\$5,983.6
	Major Research Equipment & Facilities Construction	\$200.8	\$200.3	\$200.3	\$200.0
in	Education & Human Resources	\$866.0	\$962.6	\$866.0	\$866.0
millions	DOE	\$27,042.4	\$29,923.8	\$29,429.1	\$29,984.6
of \$	Office of Science	\$5,067.4	\$5,339.8	\$5,143.9	\$5,100.0
	High Energy Physics	\$766.0	\$788.0	\$788.1	\$776.0
	Cosmic Frontier	\$106.8	\$119.3		\$119.3

AAS Congressional Visits Day

- Learn about science policy through AAS training
- Advocate for Astronomy Priorities on the Hill
- Meet with NASA leaders

Congressional Leave Behinds

Small & Mid-Scale

Projects Discovery, New Frontiers, and

Explorer class missions are

revolutionizing our view of

the entire universe, from our

own solar system to the most

competed programs broaden

innovation, and deliver high

scientific and technological

return on federal investment

MESSENGER

distant galaxies. These

participation in space

sciences, encourage

Decadal Surveys -

Each decade, the entire community comes together to set priorities for scientific studies in the ten years ahead. Each of the recent decadal surveys recommend balanced portfolios of large, medium and small projects as their highest priority, with robust investment in each so all can participate in astronomical discoveries. For the U.S. to continue leading the world in the astronomical sciences, we need revolutionary new flagship projects in space and on the ground, but we must also maintain support for the competed research grants and highly cost-effective small and mid-scale competed missions.

Revolutionary Flagships

Exciting new projects like the Large Synoptic Survey Telescope (LSST), a top decadal survey priority, will revolutionize our understanding of the cosmos, from asteroids to the largest structures in the universe, and drive technological innovations with potential commercial applications.

Kepler has opened our potentially habitable planets in our Milky Way

IBEX is helping us to better understand our place in the galaxy.

new insights on the inner

Competed Grants

Competed grants are awarded to researchers based on the **merit and breadth of impact** of the proposed scientific research. The suite of astronomical science grant programs at NASA, NSF and DOE Office of Science award research dollars to scientists and students throughout the country. Many researchers depend on these programs for their salaries and research expenses.

Education & Public Outreach

NASA/IPAC Teacher Archive Research Program (NITARP) Educator Jacqueline Barge works on original astronomical research with her high school students

NASA, JPL-Caltech, MSSS, Mastcar

AMERICAN ASTRONOMICAL SOCIETY Enhancing and sharing humanity's scientific understanding of the universe since 1899.

The Astronomical Sciences in the FY 2015 **President's Budget Request**

Right: This request proposes a large cut for the Hubble Space Telescope, in NASA's Astrophysics Division.

Astrophysics Division's telescope on a 747,

Small/mid-scale

Projects We applaud efforts to

increase the cadence for

small-scale Discovery missions

in NASA's Planetary Science

Division and Explorer missions

support for any new mid-scale

Right: No plans for

successful Planetary

line after ground-

Science's New Frontiers

breaking OSIRIS-REx

(Lockheed Martin, Goddard, Univ. of AZ)

in the Astrophysics Division.

We lament the lack of

New Frontiers missions in

Planetary Science.

has been proposed for grounding

Above: Planet hunter

TESS (MIT, Goddard,

Astrophysics Explorers

be followed by new

For decades, the astronomical sciences have set priorities as a scientific community.

Cassini Imaging Team, SSI, JPL, ESA, NASA

Efforts to hurt or harm specific projects outside community-based processes hurt our scientific enterprise.

Expanding the Frontier

Encouraged by Administration's support for **formulating the** Wide-Field InfraRed Survey Telescope (WFIRST) mission within NASA's Astrophysics Division, the top priority in the most recent astronomy decadal survey, which will revolutionize our view of the universe in the infrared (left).

The AAS celebrates commitment to building the Large Synoptic Survey Telescope (**LSST**), another top priority in the most recent astronomy decadal survey, through facility construction at NSF and camera fabrication at DOE's

Funding Research

Funding for individual researchers continues to be an area of concern as ever larger missions demand ever more budget authority for operations.

Our exciting new missions **need** accompanying research funding to support our world-leading scientific community and train the next generation of global scientific leaders.

Education & Public Outreach

We **applaud** the improved plan to restructure STEM Education programs at NASA but keep them within SMD, but are worried that total funding for NASA-SMD would drop by 2/3 under this proposal.

with small missions, like Heliophysics' THEMIS, will be much less likely to find funding under this request

More Online at http://aas.org/policy/resources/CLB14Q2 • T 202-328-2010 • Public.Policy@aas.org • http://aas.org

Visiting in person is most effective

AAS involvement

- Look for announcement on the aas website aas.org in January for a March CVD
- Join the AAS and look for policy alerts asking for letters to be sent to Congress on key issues

- Professional development workshops for early career astronomers (incl. students)
- Goal: to communicate effectively with the public
- Hands-on training and tools

Demographics
of AAS
Astronomy
Ambassadors
so far

 Apply by Mon. Oct. 19 for Jan. 3-4 workshop in Kissimmee, Florida at AAS meeting: aas.org

AIP Mather Policy Internship

- Undergraduate summer internship via SPS (Society for Physics Students) to work on Capitol Hill
- promotes awareness of and interaction with the policy process for undergraduate physics students
- direct engagement in science policy issues and efforts in the nation's capital

AAAS Science & Technology Policy Fellow

- Postdoctoral (or higher) position, typically 2 yrs
- Congressional Fellow (Capitol Hill) or Agency Fellow (EPA, DOE, NSF, etc.)
- Apply after PhD in any science

